Abstract
Minerals found in milk, such as Se, Ca, K, Zn, Mg, and P, contribute to several vital physiological processes. The aim of this study was to quantify the genetic variation in levels of Se, Ca, K, Zn, Mg, and P in milk and to quantify the between-herd variation in the levels of these minerals in milk. One morning milk sample from each of 1,860 Dutch Holstein-Friesian cows from 388 commercial herds in the Netherlands was used. Concentration of minerals was determined by inductively coupled plasma-atomic emission spectrometry. Variance components were estimated using an animal model with covariates for days in milk and age at first calving; fixed effects for season of calving and effect of test or proven bull; and random effects for animal, herd, and error. Heritability and proportion of phenotypic variation that can be explained by herd were estimated using univariate analysis. The intraherd heritability for Se was low (0.20) whereas herd explained 65% of the total variation in Se. Variation between herds most likely results from variation in Se content in the feed, which partly reflects variation in Se levels in the soil. Intraherd heritabilities for Ca, K, Zn, Mg, and P were moderate to high and were 0.57, 0.46, 0.41, 0.60, and 0.62, respectively. For Ca, K, Zn, Mg, and P, the proportions of phenotypic variation that could be explained by herd were low (0.13–0.24). This study shows that there are possibilities for altering the mineral composition of milk. For Ca, K, Zn, Mg, and P, there are good prospects for selective breeding whereas, for Se, measures at farm level may be more effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.