Abstract

The level of gene flow is an important factor influencing genetic differentiation between populations. Typically, geographic distance is considered to be the major factor limiting dispersal and should thus only influence the degree of genetic divergence at larger spatial scales. However, recent studies have revealed the possibility for small-scale genetic differentiation, suggesting that the spatial scale considered is pivotal for finding patterns of isolation by distance. To address this question, genetic and morphological differentiation were studied at two spatial scales (range 2–13 km and range 300 m to 2 km) in the perch (Perca fluviatilis L.) from the east coast archipelago of Sweden, using seven microsatellite loci and geometric morphometrics. We found highly significant genetic differentiation between sampled locations at both scales. At the larger spatial scale, the distance per se was not affecting the level of divergence. At the small scale, however, we found subtle patterns of isolation by distance. In addition, we also found morphological divergence between locations, congruent with a spatial separation at a microgeographic scale, most likely due to phenotypic plasticity. The present study highlights the importance of geographical scale and indicates that there might be a disparity between the dispersal capacity of a species and the actual movement of genes. Thus, how we view the environment and possible barriers to dispersal might have great implications for our ability to fully understand the evolution of genetic differentiation, local adaptation, and, in the end, speciation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call