Abstract

Two Saccharomyces cerevisiae genes previously unknown to be required for DNA synthesis have been identified by screening a collection of temperature-sensitive mutants. The effects of mutations in DNA43 and DNA52 on the rate of S phase DNA synthesis were detected by monitoring DNA synthesis in synchronous populations that were obtained by isopycnic density centrifugation. dna43-1 and dna52-1 cells undergo cell-cycle arrest at the restrictive temperature (37 degrees C), exhibiting a large-budded terminal phenotype; the nuclei of arrested cells are located at the neck of the bud and have failed to undergo DNA replication. These phenotypes suggest that DNA43 and DNA52 are required for entry into or completion of S phase. DNA43 and DNA52 were cloned by their abilities to suppress the temperature-sensitive lethal phenotypes of dna43-1 and dna52-1 cells, respectively. DNA sequence analysis suggested that DNA43 and DNA52 encode proteins of 59.6 and 80.6 kDa, respectively. Both DNA43 and DNA52 are essential for viability and genetic mapping experiments indicate that they represent previously unidentified genes: DNA43 is located on chromosome IX, 32 cM distal from his5 and DNA52 is located on chromosome IV, 0.9 cM from cdc34.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.