Abstract

Genetic effects and genotype×environment (GE) interaction effects on the cooking quality traits of indica rice (Oryza sativa L.) were analyzed based on a genetic model for quantitative traits of triploid endosperm in cereal crops. Nine cytoplasmic male-sterile lines as females and 5 restoring lines as males were used in an incomplete diallel cross over 2 years. The cooking quality traits studied were observed to be mainly controlled by genetic effects, but GE interaction effects, especially for amylose content (AC) and alkali spreading score (ASS), were also indicated. Among the genetic effects, seed direct effects and maternal effects were the main components of AC and ASS, respectively; cytoplasmic effects were the main components of gel consistency (GC). Among the GE interaction effects, AC and ASS were mainly affected by maternal interaction effects and GC by direct interaction effects. Additive effects and/or additive interaction effects were the main factors controlling the performance of rice cooking quality traits except for GC which was affected by dominant interaction effects. For AC and GC, there were seed heterosis and/or maternal heterosis. The predicated genetic effects indicated that four parents were better than the others in improving the rice cooking quality traits of the progenies. It was shown that genetic heterosis and GE interaction heterosis were important, especially for amylose content trait in early season indica rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call