Abstract

ABSTRACTSmall millets are very promising agricultural entity to ensure global food security. They gained remarkable importance in agriculture due to their resilience to climatic changes and increasing demand for nutritious food and feed. The genetic variability in the core and mini-core germplasm of small millets was characterized for nutritional composition and capacity to tolerate abiotic stresses that can be infused in breeding programs. Other than the foxtail millet, availability of genomic information in small millets is far below the mark for use in marker-assisted breeding and other genetic improvement programs. The genome sequence of foxtail millet has recently triggered a plethora of post-genomic analysis and envisaged foxtail millet as a model organism for the C4 grasses and bioenergy research. Recent developments in the next-generation sequencing technologies enabled us, with the simultaneous discovery of high-throughput markers and multiplexed genotyping of germplasm, to speedup marker-assisted breeding. In this context, an in-depth analysis of the wealth of diverse germplasm resources and future perspectives of integrating genomics in genome-wide marker-trait association and breeding in small millets is worthy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call