Abstract

Telomeres are TTAGGG repeats located at the end of chromosomes that maintain DNA stability. Telomere length (TL) has been widely implicated as a marker of biological age, and is associated with several human diseases, including depression, cardiovascular disease and cancer. Twin studies and cohort studies estimate heritability of TL between 78-82%. Moreover, several genomic loci which influence TL have been identified. Despite the success of genetic studies in furthering our understanding of telomere biology, identified variants account for only a small proportion of the estimated heritability. Over the last decade, epigenetic regulation of mammalian telomeres has become apparent. These epigenetic mechanisms, which act to regulate gene expression via modifications to DNA, histone proteins and chromatin, change with age and in response to specific environmental and psychosocial factors —providing a mechanism for the interaction between genotype and the environment. The present review examines the evidence for genetic and epigenetic regulation of TL and discusses their role in human disease, before outlining some of the methodological limitations of these studies. Finally, the review defines what the ‘epigenetic clock’ is and evaluates its relationship with TL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.