Abstract

The global prevalence of vitamin D deficiency appears to be increasing, and the impact of this on human health is important because of the association of vitamin D insufficiency with increased risk of osteoporosis, cardiovascular disease and some cancers. There are few studies on the genetic factors that can influence vitamin D levels. In particular, the data from twin and family-based studies have reported that circulating vitamin D concentrations are partially determined by genetic factors. Moreover, it has been shown that genetic variants (e.g., mutation) and alteration (e.g., deletion, amplification, inversion) in genes involved in the metabolism, catabolism, transport, or binding of vitamin D to it receptor, might affect vitamin D level. However, the underlying genetic determinants of plasma 25-hydroxyvitamin D3 [25(OH)D] concentrations remain to be elucidated. Furthermore, the association between epigenetic modifications such as DNA methylation and vitamin D level has now been reported in several studies. The aim of current review was to provide an overview of the possible value of loci associated to vitamin D metabolism, catabolism, and transport as well epigenetic modification and environmental factors influencing vitamin D status.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.