Abstract

Phenotypic plasticity is the property of a genotype to produce different phenotypes under different environmental conditions. Understanding genetic and environmental factors behind phenotypic plasticity helps answer some longstanding biology questions and improve phenotype prediction. In this study, we investigated the phenotypic plasticity of flowering time and plant height with a set of diverse sorghum lines evaluated across 14 natural field environments. An environmental index was identified to quantitatively connect the environments. Reaction norms were then obtained with the identified indices for genetic dissection of phenotypic plasticity and performance prediction. Genome-wide association studies (GWAS) detected different sets of loci for reaction-norm parameters (intercept and slope), including 10 new genomic regions in addition to known maturity (Ma1) and dwarfing genes (Dw1, Dw2, Dw3, Dw4 and qHT7.1). Cross-validations under multiple scenarios showed promising results in predicting diverse germplasm in dynamic environments. Additional experiments conducted at four new environments, including one from a site outside of the geographical region of the initial environments, further validated the predictions. Our findings indicate that identifying the environmental index enriches our understanding of gene-environmental interplay underlying phenotypic plasticity, and that genomic prediction with the environmental dimension facilitates prediction-guided breeding for future environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.