Abstract

The global distribution of the toxic cyanobacterium Cylindrospermopsis raciborskii has recently increased, and it has now been identified in tropical, subtropical and temperate freshwater bodies. The mechanisms underlying its success and expansion are still unknown. Several hypotheses have been proposed, including climate change, natural selection and physiological tolerance to different environmental conditions. In this study, we determined the phenotypic and genotypic characteristics of two recently isolated South American strains of C. raciborskii obtained from Uruguay. We analyzed the morphology, growth preferences, tolerance to low temperature (14 °C) and toxin production of the strains and performed phylogenetic analyses based on the ITS and nifH gene sequences. Both isolates showed significantly different morphology and growth behavior under different light intensities and phosphate supply. When genetic differences were assessed by BOX PCR, cluster analyses revealed that they could also be distinguished genotypically and were clearly distinct from C. raciborskii isolated from other continents. Phylogenetic analysis showed that the Uruguayan strains were closely affiliated to other C. raciborskii isolated from the Americas, especially to those from Brazil. Similar to previous studies, we found three solid clusters (Africa-Australia, Europe and America) according to the geographical origin of the isolates. Interestingly, based on nifH sequences, subclusters were identified in American populations indicating an early spread of the species within the continent. We propose that phenotypic and genetic variability of C. raciborskii populations is linked to the existence of different ecotypes whose success is subject to the local environmental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call