Abstract

ABSTRACT Objective The concept of ‘developmental and epileptic encephalopathy (DEE)’ recognises that in infants presenting with severe early-onset epilepsy, neurodevelopmental comorbidity may be attributable to both the underlying cause and to adverse effects of uncontrolled epileptic activity. There is no direct genotype – phenotype correlation in DEEs. This study aimed to report the genetic and phenotypic differences in patients with DEE. Methods Genetic evaluations of the patients were performed due to epilepsy combined with developmental delay, epileptic encephalopathy, motor deficits, autistic features, or cognitive impairment. Patients were assessed for demographic characteristics, medical history, family history, psychomotor development, seizure control interventions, electroencephalogram (EEG) and magnetic resonance imaging (MRI) findings. Results This study included 20 children aged 0–16 years who were diagnosed as having DEE.The types of DEE detected in our study were DEE 2, 4, 6B, 7, 11, 26, 30, 33, 35, 42, 58, 62, and 67.Status epilepticus was recorded in only DEE7. The most common EEG abnormality was multifocal epileptic discharges (35%,) followed by burst-suppression patterns in patients with neonatal-onset seizures. Thirteen of the children were aged over 2 years, two (15%) were non-ambulatory and six (46%) were non-verbal. MRI scans were normal in 80% of the patients. Refractory epilepsy seen in 33% of cases.De-novo mutation, microcephaly and dysmorphic findings accompany resistant seizures and are associated with poor prognosis Discussion For patients with movement disorders, developmental delay, autism, and ID with or without epilepsy in any period of their life, next-generation sequencing is the only diagnostic technique available, with genetic analysis often being the only diagnostic method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call