Abstract

In Chinese hamster ovary cells, stable mutants exhibiting specific resistance or collateral sensitivity towards the various microtubule inhibitors podophyllotoxin, colchicine, griseofulvin, taxol, nocodazole, vinblastine, and maytansine have been isolated. A number of independent mutants selected for resistance to podophyllotoxin and colchicine contain electrophoretically altered forms of two proteins, P1 and P2, of relative molecular masses of approximately 63 000 and 69 000, respectively. The proteins P1 and P2 have been shown to be microtubule related by a number of different genetic and biochemical criteria and are among the major proteins of Chinese hamster ovary cells, being present in approximately equimolar amounts with tubulin. In addition, a griseofulvin-resistant mutant contains a novel mutation (presumably nonsense) which reduces the relative molecular mass of a protein, P5 (relative mass congruent to 200 000), by about 20 000. Specific antibodies to protein P1 have been raised and cross-reactivity studies show that a similar protein is also present in cells from all vertebrate species examined, viz. man, monkey, mouse, Chinese hamster, Syrian hamster, and chicken. Immunofluorescence studies with anti-P1 and anti-tubulin antibodies show that, in interphase cells from various species, the P1 antibody reacts specifically with mitochondria whose overall cellular distribution is strikingly similar to the distribution of microtubules. The mitochondrial localization of the microtubule-related protein P1 provides strong suggestive evidence regarding the existence of a chemical and functional linkage between these two structures, with protein P1 playing an important role in this linkage. Some implication of these results are discussed and it is suggested that mitochondria play an important role in the dynamics of microtubules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.