Abstract

Trimethylamine N-oxide (TMAO) reductases are widespread in bacteria and often function in anaerobic respiration. The regulation and expression of TMAO reductase operons have been well studied in model genera such as Escherichia, Shewanella, and Rhodobacter, although TMAO reductases are present in many other bacteria, including the marine Vibrio species. The genome sequence of Vibrio fischeri revealed three putative TMAO reductase operons, and a previous report identified TMAO reductase activity in symbiotic V. fischeri isolates associated with the light organs of adult Hawaiian bobtail squid, Euprymna scolopes. We examined the roles and regulation of these three operons using mutational analyses and promoter-reporter fusions. We found that the torECA promoter, and to a lesser extent the torYZ and dmsABC promoters, were active during symbiotic colonization of juvenile E. scolopes; however, a V. fischeri strain lacking TMAO reductase activity displays no discernible colonization defect over the first 48 h. Our studies also revealed that torECA has the most active promoter of the putative TMAO reductase operons, and TorECA is the major contributor to TMAO-dependent growth in V. fischeri under the conditions tested. Interestingly, the transcriptional regulation of TMAO reductase operons in V. fischeri appears to differ from that in previously studied organisms, such as Escherichia coli, which may reflect differences in gene arrangement and bacterial habitat. This study lays the foundation for using V. fischeri as a model system for studying TMAO reductases in the Vibrionaceae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call