Abstract

BackgroundPlasmodium malariae is a widely spread but neglected human malaria parasite, which causes chronic infections. Studies on genetic polymorphisms of anti-malarial drug target genes in P. malariae are limited. Previous reports have shown polymorphisms in the P. malariae dihydrofolate reductase gene associated with pyrimethamine resistance and linked to pyrimethamine drug pressure. This study investigated polymorphisms of the P. malariae homologous genes, chloroquine resistant transporter and multidrug resistant 1, associated with chloroquine and mefloquine resistance in Plasmodium falciparum.MethodsThe orthologous P. malariae crt and mdr1 genes were studied in 95 patients with P. malariae infection between 2002 and 2016 from Thailand (N = 51) and Myanmar (N = 44). Gene sequences were analysed using BioEdit, MEGA7, and DnaSP programs. Mutations and gene amplifications were compared with P. falciparum and Plasmodium vivax orthologous genes. Protein topology models derived from the observed pmcrt and pmmdr1 haplotypes were constructed and analysed using Phyre2, SWISS MODEL and Discovery Studio Visualization V 17.2.ResultsTwo non-synonymous mutations were observed in exon 2 (H53P, 40%) and exon 8 (E278D, 44%) of pmcrt. The topology model indicated that H53P and E278D were located outside of the transmembrane domain and were unlikely to affect protein function. Pmmdr1 was more diverse than pmcrt, with 10 non-synonymous and 3 synonymous mutations observed. Non-synonymous mutations were located in the parasite cytoplasmic site, transmembrane 11 and nucleotide binding domains 1 and 2. Polymorphisms conferring amino acid changes in the transmembrane and nucleotide binding domains were predicted to have some effect on PmMDR1 conformation, but were unlikely to affect protein function. All P. malariae parasites in this study contained a single copy of the mdr1 gene.ConclusionsThe observed polymorphisms in pmcrt and pmmdr1 genes are unlikely to affect protein function and unlikely related to chloroquine drug pressure. Similarly, the absence of pmmdr1 copy number variation suggests limited mefloquine drug pressure on the P. malariae parasite population, despite its long time use in Thailand for the treatment of falciparum malaria.

Highlights

  • Plasmodium malariae is a widely spread but neglected human malaria parasite, which causes chronic infections

  • The current study focuses on the P. malariae crt and mdr1 orthologue genes, which in P. falciparum are involved in chloroquine and mefloquine resistance

  • In this study, the anti-malarial drug target genes, pmcrt and pmmdr1, were characterized in P. malariae samples collected from Thailand and Myanmar and were compared to the orthologous mutations in pfcrt and pfmdr1 because polymorphisms in P. falciparum are well characterized for their association with chloroquine and mefloquine resistance [14,15,16, 31]

Read more

Summary

Introduction

Plasmodium malariae is a widely spread but neglected human malaria parasite, which causes chronic infections. Studies on genetic polymorphisms of anti-malarial drug target genes in P. malariae are limited. Previous reports have shown polymorphisms in the P. malariae dihydrofolate reductase gene associated with pyrimethamine resistance and linked to pyrimethamine drug pressure. This study investigated polymorphisms of the P. malariae homologous genes, chloroquine resistant transporter and multidrug resistant 1, associated with chloroquine and mefloquine resistance in Plasmodium falciparum. There is limited information on the biology and molecular genetics of P. malariae as well as on anti-malarial drug resistance in this species for which long-term in vitro culture methods are lacking. In vitro drug testing in P. malariae is further complicated by the low parasitaemias present in patients and the high proportion of mixed infections with other Plasmodium species. An alternative approach for monitoring antimalarial drug resistance in P. malariae is the assessment of polymorphisms in anti-malarial drug target genes. Earlier studies have reported polymorphisms in the P. malariae dhps, dhfr and kelch orthologues, which relate to sulfadoxine, pyrimethamine and artemisinin resistance, respectively

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call