Abstract

Wild American plains bison (Bison bison) populations virtually disappeared in the late 1800s, with some remnant animals retained in what would become Yellowstone National Park and on private ranches. Some of these private bison were intentionally crossbred with cattle for commercial purposes. This forced hybridization resulted in both mitochondrial and nuclear introgression of cattle genes into some of the extant bison genome. As the private populations grew, excess animals, along with their history of cattle genetics, provided founders for newly established public bison populations. Of the US public bison herds, only those in Yellowstone and Wind Cave National Parks (YNP and WCNP) appear to be free of detectable levels of cattle introgression. However, a small free-ranging population (~350 animals) exists on public land, along with domestic cattle, in the Henry Mountains (HM) of southern Utah. This isolated bison herd originated from a founder group translocated from YNP in the 1940s. Using genetic samples from 129 individuals, we examined the genetic status of the HM population and found no evidence of mitochondrial or nuclear introgression of cattle genes. This new information confirms it is highly unlikely for free-living bison to crossbreed with cattle, and this disease-free HM bison herd is valuable for the long-term conservation of the species. This bison herd is a subpopulation of the YNP/WCNP/HM metapopulation, within which it can contribute significantly to national efforts to restore the American plains bison to more of its native range.

Highlights

  • Once numbering in the millions, plains bison (Bison bison) populations across North America dramatically declined from over-harvesting to less than 100 wild bison by the late 1800s [1]

  • The residual effects of early bison-cattle hybridization efforts are documented in 6 of the 8 major federal bison herds, with Yellowstone and Wind Cave National Parks being the only federal conservation herds where cattle introgression has been screened for but not detected [9]. These two populations represent the largest bison conservation herds, yet, as we report here, the disease-free population in the Henry Mountains (HM) of southern Utah (Fig 1) appears to be free of introgression by domestic cattle genes and represents a third such population of plains bison on public land in North America

  • With 129 available genetic samples for this herd, our objectives were to assess the overall genetic variation as it may relate to fitness and potential inbreeding effects on the HM bison herd by: (1) testing for mitochondrial and nuclear introgression; (2) assessing genetic diversity in the HM herd in comparison to the 8 largest US federal herds; (3) determining the genetic ancestry contribution from the 8 federal herds to the HM herd; and (4) determining the genetic relationship of the HM herd with the 8 federal herds

Read more

Summary

Introduction

Once numbering in the millions, plains bison (Bison bison) populations across North America dramatically declined from over-harvesting to less than 100 wild bison by the late 1800s [1]. Private individuals led bison conservation by capturing and raising wild bison on private ranches [2,3]. By the late 1800s, bison and cattle were crossbred for commercial purposes, PLOS ONE | DOI:10.1371/journal.pone.0144239. Of the ~500,000 bison in North America today, only ~20,000 are found in conservation herds while the others are all in private commercial livestock production herds [4,5]. Whereas many private herds are raised for values other than livestock production (aesthetics, public viewing, conservation), they are always vulnerable to economic forces that could jeopardize the security of their conservation status

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call