Abstract
The bovine papillomavirus type 1 (BPV1) E2 protein binds as a dimer to the viral genome to promote its transcription, replication and maintenance in keratinocytes. Although BPV1 E2 dimerizes primarily through its DNA-binding domain, it was shown previously that its transactivation domain (TAD) can also dimerize in vitro through formation of a disulfide bond between cysteine 57 (C57) of adjacent monomers and of an ion pair between arginine 172 (R172) and aspartic acid 175 (D175). The function of this TAD dimerization interface in vivo remains unknown. Here, we report the effects of substituting C57, R172 and D175 by alanine on the transactivation activity of BPV E2 as well as on its ability to support viral DNA replication using a novel luciferase-based assay. Results for this mutational analysis suggest that the TAD dimerization interface is not essential for either process but may contribute to the DNA replication activity of BPV1 E2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.