Abstract

We have developed and used a genetic selection system in Escherichia coli to study functional requirements for homing site recognition and cleavage by a representative eukaryotic mobile intron endonuclease. The homing endonuclease, I-CreI, was originally isolated from the chloroplast of the unicellular green alga Chlamydomonas reinhardtii. I-CreI homing site mutants contained base pair substitutions or single base deletions that altered the rate of homing site cleavage and/or product release. I-CreI endonuclease mutants fell into six phenotypic classes that differed in in vivo activity, toxicity or genetic dominance. Inactivating mutations clustered in the N-terminal 60% of the I-CreI amino acid sequence, and two frameshift mutations were isolated that resulted in premature translation termination though retained partial activity. These mutations indicate that the N-terminal two-thirds of the I-CreI endonuclease is sufficient for homing site recognition and cleavage. Substitution mutations altered in four potential active site residues were examined: D20N, Q47H or R70A substitutions inactivated endonuclease activity, whereas S22A did not. The genetic approach we have taken complements phylogenetic and structural studies of mobile intron endonucleases and has provided new information on the mechanistic basis of I-CreI homing site recognition and cleavage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.