Abstract

The objective of this study was to estimate genetic parameters for various reproductive disorders based on veterinary diagnoses for Austrian Fleckvieh (Simmental) dual-purpose cattle. The health traits analyzed included retained placenta, puerperal diseases, metritis, silent heat and anestrus, and cystic ovaries. Three composite traits were also evaluated: early reproductive disorders, late reproductive disorders, and all reproductive disorders. Heritabilities were estimated with logit threshold sire, linear sire, and linear animal models. The threshold model estimates for heritability ranged from 0.01 to 0.14, whereas the linear model estimates were lower, ranging from 0.005 to 0.04. Rank correlations among random effects of sires from linear and threshold sire models were high (>0.99), whereas correlations between any sire model (linear, threshold) and the linear animal model were lower (0.88–0.92). Genetic correlations among reproductive disorders, fertility traits, and milk yield were estimated with bivariate linear animal models. Fertility traits included interval from calving to first insemination, nonreturn rate at 56 d, and interval between first and last insemination. Milk yield was calculated as the mean from test-day 1 and test-day 2 after calving. Estimated genetic correlations were 1 among metritis, retained placenta, and puerperal diseases and 0.85 between silent heat–anestrus and cystic ovaries. Low to moderate correlations (−0.01 to 0.68) were obtained among the other disorders. Genetic correlations between reproductive disorders and fertility traits were favorable, whereas antagonistic relationships were observed between milk yield in early lactation and reproductive disorders. Pearson correlations between estimated breeding values for reproductive disorders and other routinely evaluated traits were computed, which revealed noticeable favorable relationships to longevity, calving ease maternal, and stillbirth maternal. The results showed that data from the Austrian health monitoring project can be used for genetic selection against reproductive disorders in Fleckvieh cattle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.