Abstract

Maize lethal necrosis (MLN) occurs when maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) co-infect maize plant. Yield loss of up to 100% can be experienced under severe infections. Identification and validation of genomic regions and their flanking markers can facilitate marker assisted breeding for resistance to MLN. To understand the status of previously identified quantitative trait loci (QTL)in diverse genetic background, F3 progenies derived from seven bi-parental populations were genotyped using 500 selected kompetitive allele specific PCR (KASP) SNPs. The F3 progenies were evaluated under artificial MLN inoculation for three seasons. Phenotypic analyses revealed significant variability (P ≤ 0.01) among genotypes for responses to MLN infections, with high heritability estimates (0.62 to 0.82) for MLN disease severity and AUDPC values. Linkage mapping and joint linkage association mapping revealed at least seven major QTL (qMLN3_130 and qMLN3_142, qMLN5_190 and qMLN5_202, qMLN6_85 and qMLN6_157 qMLN8_10 and qMLN9_142) spread across the 7-biparetal populations, for resistance to MLN infections and were consistent with those reported previously. The seven QTL appeared to be stable across genetic backgrounds and across environments. Therefore, these QTL could be useful for marker assisted breeding for resistance to MLN.

Highlights

  • Maize lethal necrosis (MLN) is a major disease in sub-Saharan Africa (SSA) caused by co-infections of maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) [1]

  • Seven major quantitative trait loci (QTL) were identified for resistance to MLN, localized on chromosomes 3, 5, 6, 8 and

  • Several QTL on chromosomes 1, 3, 5, and 6 shared similar confidence intervals (CI) with those reported previously. These QTL could be adopted for marker assisted breeding for improvement of maize against MLN infection

Read more

Summary

Introduction

Maize lethal necrosis (MLN) is a major disease in sub-Saharan Africa (SSA) caused by co-infections of maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) [1]. MCMV can able to interact with any member of the Potyviridae family to cause lethal necrosis in maize [2]. Breeding for host resistance to MLN is the most effective means of preventing yield losses in farmer’s fields. Application of molecular markers could enhance breeding for resistance to MLN. Markers are widely used in breeding for crop improvement including maize, the tools are inconsequential unless the linked markers or quantitative trait loci (QTL) are tested for their effectiveness and reproducibility in different genetic backgrounds. QTL validation adds weight to assess the effectiveness of alleles and their linked markers

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call