Abstract

Several pathotypes of Alternaria alternata are known to produce host-specific toxins (HSTs) as agents of pathogenicity or virulence. However, investigations into the genetic controls of HST biosynthesis and pathogenicity of Alternaria pathogens have been limited by the lack of a sexual stage in the life cycle of these pathogens. We report here the development of a protoplast fusion system and its use for genetic analysis of HST production and specific pathogenicity of the tomato pathotype of A. alternata that produces AAL-toxin as a HST. Drug-resistant transformants have been isolated by genetic transformation of nonpathogenic A. alternata (strain O-94) and A. alternata tomato pathotype (strain As-27) with vectors conferring resistance to hygromycin B and geneticin, respectively. Protoplasts of the respective transformants were fused by polyethylene glycol treatment or electrofusion. Fusion products were selected by culturing in the presence of both hygromycin B and geneticin, then confirmed by amplification using a polymerase chain reaction with specific primers to the transforming drug-resistance genes. Stable fusants were purified by successive subcultures on selective medium and single-spore isolation. The resultant stable fusants, probably inter-strain hybrids, had the same pathogenicity and toxin production as the wild-type strain As-27. These results suggest that protoplast fusion has potential applications for genetic analysis of A. alternata pathogens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.