Abstract

Recent global genetic analyses demonstrated that the regulation of gene expression at the level of transcription elongation is a common feature in eukaryotes. The positive transcription elongation factor P-TEFb plays a critical role in this process. P-TEFb is a cyclin-dependent kinase, which controls the fraction of RNA polymerase II (RNAP II) that can enter productive elongation. While the biochemical properties of P-TEFb and its associated factors have been characterized extensively in vitro, its function in vivo remains less well understood. In this paper, we describe various heterologous nucleic acid tethering systems that can be used to examine transcription factors that function via P-TEFb.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call