Abstract

In diazotrophic organisms, nitrogenase synthesis and activity are tightly regulated. Two genes, nifL and nifA, are implicated as playing a major role in this regulation. NifA is a transcriptional activator, and its activity is inhibited by NifL in response to availability of excess fixed nitrogen and high O(2) tension. It was postulated that NifL binds to NifA to inhibit NifA-mediated transcriptional activation of nif genes. Mutational analysis combined with transcriptional activation studies clearly is in agreement with the proposal that NifL interacts with NifA. However, several attempts to identify NifA-NifL interactions by using methods such as coimmunoprecipitations and chemical cross-linking experiments failed to detect direct interactions between these proteins. Here we have taken a genetic approach, the use of a yeast two-hybrid protein-protein interaction assay system, to investigate NifL interaction with NifA. A DNA fragment corresponding to the kinase-like domain of nifL was PCR amplified and was used to generate translation fusions with the DNA binding domain and the DNA activation domain of the yeast transcriptional activator GAL4 in yeast two-hybrid vectors. Similarly, a DNA fragment corresponding to the catalytic domain of nifA was PCR amplified and used to generate translation fusions with the DNA-binding domain and the DNA-activation domain of GAL4 in yeast two-hybrid vectors. After introducing appropriate plasmid combinations in yeast cells, the existance of direct interaction between NifA and NifL was analyzed with the MATCHMAKER yeast two-hybrid system by testing for the expression of lacZ and his3 genes. These analyses showed that the kinase-like domain of NifL directly interacts with the catalytic domain of NifA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.