Abstract

The enzyme phosphoenolpyruvate carboxykinase (Pck) catalyzes the first step in the gluconeogenic pathway in most organisms. We are examining the genetic regulation of the gene encoding Pck, pckA, in Rhizobium (now Sinorhizobium) meliloti. This bacterium forms N2-fixing root nodules on alfalfa, and the major energy sources supplied to the bacteria within these nodules are C4-dicarboxylic acids such as malate and succinate. R. meliloti cells growing in glucose minimal medium show very low pckA expression whereas addition of succinate to this medium results in a rapid induction of pckA transcription. We identified spontaneous mutations (rpk) that alter the regulation of pckA expression such that pckA is expressed in media containing the non-inducing carbon sources lactose and glucose. Genetic and phenotypic analysis allowed us to differentiate at least four rpk mutant classes that map to different locations on the R. meliloti chromosome. The wild-type locus corresponding to one of these rpk loci was cloned by complementation, and two Tn5 insertions within the insert DNA that no longer complemented the rpk mutation were identified. The nucleotide sequence of this region revealed that both Tn5 insertions lay within a gene encoding a protein homologous to the GalR/LacI family of transcriptional regulators that are involved in metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.