Abstract

The objective was to estimate the genetic parameters of performance and resilience of growing pigs under disease. Data were from 3,139 Yorkshire × Landrace wean-to-finish pigs that were exposed to a natural polymicrobial disease challenge that was established by entering naturally infected animals into a nursery barn, targeting various viral and bacterial diseases. The challenge was maintained by entering batches of 60 or 75 healthy nursery pigs every 3 wk in a continuous flow system. Traits analyzed included average daily gain (ADG), feed intake (ADFI) and duration (ADFD); feed conversion ratio (FCR); residual feed intake (RFI); mortality (MOR); number of health treatments (TRT); health scores (HScore); carcass weight (CWT), back fat (CBF) and loin depth (CLD); dressing percentage (DRS); lean yield (LYLD); day-to-day variation in feed intake and duration (VARFI and VARDUR); and the proportion of off-feed days (OFFFI and OFFDUR). Analyses were performed by mixed linear models with genomic relationships. The resilience traits, such as TRT, MOR, and HScore, were lowly heritable (up to 0.15) but had high genetic correlations with each other. Performance traits, such as ADG, ADFI, ADFD, FCR, RFI, and carcass traits, were moderate to highly heritable (0.17 to 0.49). Heritabilities of resilience indicator traits such as OFF and VAR had low to moderate heritabilities (0.08 to 0.23) but were higher when based on duration vs. amount. ADFI had a low genetic correlation with ADFD (0.13). ADG in the challenge nursery had stronger negative genetic correlations with both TRT and MOR than ADG in the finisher (-0.37 to -0.74 vs. -0.15 to -0.56). ADFI and FCR had moderate negative (-0.21 to -0.39) and positive (0.34 to 0.49) genetic correlations, respectively, with TRT and MOR. ADFD and RFI had very low genetic correlations with TRT and MOR. CWT and DRS were moderately negatively correlated with TRT and MOR (-0.33 to -0.59). Resilience indicator traits based on feed intake or duration had moderate to high positive genetic correlations with TRT (0.18 to 0.81) and MOR (0.33 to 0.87). In conclusion, performance and resilience traits under a polymicrobial disease challenge are heritable and can be changed by selection. Phenotypes extracted from feed intake patterns can be used as genetic indicator traits for disease resilience. Most promising is day-to-day variation in intake duration, which had a sizeable heritability (0.23) and favorable genetic correlations with MOR (0.79) and treatment rate (0.20).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call