Abstract

A new estimation-based Bayesian variable selection approach is presented for genetic analysis of complex traits based on linear or logistic regression. By assigning a mixture of uniform priors (MU) to genetic effects, the approach provides an intuitive way of specifying hyperparameters controlling the selection of multiple influential loci. It aims at avoiding the difficulty of interpreting assumptions made in the specifications of priors. The method is compared in two real datasets with two other approaches, stochastic search variable selection (SSVS) and a re-formulation of Bayes B utilizing indicator variables and adaptive Student's t-distributions (IAt). The Markov Chain Monte Carlo (MCMC) sampling performance of the three methods is evaluated using the publicly available software OpenBUGS (model scripts are provided in the Supplementary material). The sensitivity of MU to the specification of hyperparameters is assessed in one of the data examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call