Abstract

Calmodulin, a small, ubiquitous Ca2+-binding protein, regulates a wide variety of proteins and processes in all eukaryotes. CMD1, the single gene encoding calmodulin in S. cerevisiae, is essential, and this review discusses studies that identified many of calmodulin's physiological targets and their functions in yeast cells. Calmodulin performs essential roles in mitosis, through its regulation of Nuf1p/Spc110p, a component of the spindle pole body, and in bud growth, by binding Myo2p, an unconventional class V myosin required for polarized secretion. Surprisingly, mutant calmodulins that fail to bind Ca2+ can perform these essential functions. Calmodulin is also required for endocytosis in yeast and participates in Ca2+-dependent, stress-activated signaling pathways through its regulation of a protein phosphatase, calcineurin, and the protein kinases, Cmk1p and Cmk2p. Thus, calmodulin performs important physiological functions in yeast cells in both its Ca2+-bound and Ca2+-free form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.