Abstract

A highly arsenic-metabolizing bacterial strain was isolated from an agricultural field known for arsenic contamination near Munshiganj (Bangladesh). Based on 16S rRNA gene analysis, the strain was identified as Micrococcus luteus and designated as strain BPB1. Arsenate and arsenite minimal inhibitory concentrations of 650 mM and 7.5 mM, respectively, were observed for strain BPB1, slightly higher than the figures observed in its close relative M. luteus DSM 20030T. Such observations were consistent with the presence of arsenic-metabolizing genes in the genome of M. luteus. We describe this strain as having an MSH/Mrx-dependent class of arsenate reductase, and an arsenite transporter family in the ACR3(1) group. Besides an intracellular arsenic resistance mechanism, experiments carried out using field emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FESEM-EDS) and Fourier transform infrared spectroscopy (FTIR) demonstrated the ability of BPB1 to sequester arsenate in extracellular polymeric substances on its cell surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call