Abstract

BackgroundDuchenne muscular dystrophy (DMD) is a severe X-linked recessive neuromuscular disorder. Patients with DMD usually have severe and fatal symptoms, including progressive irreversible muscle weakness and atrophy complicated with gastrocnemius muscle pseudohypertrophy. DMD is caused by mutations in the dystrophin-encoding DMD gene, including large rearrangements and point mutations. This retrospective study was aimed at supplying information on our 4-year clinical experience of DMD genetic and prenatal diagnosis at the Department of Prenatal Diagnosis in Women’s Hospital of Nanjing Medical University.MethodsMultiplex ligation-dependent probe amplification (MLPA) was used to detect the exon deletions or duplications. And Ion AmpliSeq™ panel for inherited disease was used as the next-generation sequencing (NGS) method to identify the point mutations in exons of DMD gene, but the introns were not sequenced.ResultsIn this study, the large deletions and duplications of DMD gene were detected in 32 (51.6%) of the 62 families, while point mutations were detected in 20 families (32.3%). The remaining 10 families with a negative genetic diagnosis need to be reevaluated for clinical symptoms or be detected by other molecular methods. Notably, six novel mutations were identified, including c.412A > T(p.Lys138*), c.2962delT(p.Ser988Leufs*16), c.6850dupA (p.Ser2284Lysfs*7), c.5139dupA (p.Glu 1714Argfs*5), c.6201_6203delGCCins CCCA(p.Val2069Cysfs*14) and c.10705A > T (p.Lys3569*). In 52 families with positive results, 45 mothers (86.5%) showed positive results during carrier testing and de novo mutations arose in 7 probands. The prenatal diagnosis was offered to 34 fetuses whether the pregnant mother was a carrier or not. As a result, eight male fetuses were affected, three female fetuses were carriers, and the remaining fetuses had no pathogenic mutation.ConclusionsThis study reported that MLPA and NGS could be used for screening the DMD gene mutations. Furthermore, the stepwise procedure of prenatal diagnosis of DMD gene was shown in our study, which is important for assessing the mutation type of fetuses and providing perinatal care in DMD high-risk families.

Highlights

  • Duchenne muscular dystrophy (DMD) is a severe X-linked recessive neuromuscular disorder

  • Exons deletion or duplication of DMD gene was detected by Multiplex ligation-dependent probed amplification (MLPA) Among the 62 families with a history of DMD, exon deletion or duplication was detected in 32 families (32/62, 51.6%) using MLPA (Table 1)

  • Point mutations of DMD gene were identified by next-generation sequencing technology (NGS) The remaining 30 families with negative MLPA results were further investigated using NGS

Read more

Summary

Introduction

Duchenne muscular dystrophy (DMD) is a severe X-linked recessive neuromuscular disorder. DMD is caused by mutations in the dystrophinencoding DMD gene, including large rearrangements and point mutations. Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease of childhood, defined as progressive deterioration of muscle tissue and resultant weakness, which affects 1 in 3600–6000 male live births [1, 2]. It is an X-linked recessive disease caused by mutations in the DMD gene. The target next-generation sequencing technology (NGS), known as deep sequencing, has been widely applied to detect all types of mutations in the DMD gene [10, 11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call