Abstract

Mechanized harvesting of cucumbers offers significant advantages compared to manual labor as both shortages and costs of labor increase. However the efficient use of machines depends on breeding plants with longer peduncles, but the genetic and molecular basis of fruit peduncle development in cucumber is not well understood. In this study, F2 populations were developed from a cross between two inbred lines, 1101 with a long peduncle and 1694 with a short peduncle. These were grown at two field sites, Hainan, with a tropical marine climate, in December 2014, and Beijing, with a warm temperate climate, in May 2015. Electron microscope examination of the pith cells in the peduncles of the two parental lines showed that line 1101 had significantly greater numbers of smaller cells compared to line 1694. The inheritance of cucumber fruit peduncle length (FPL) was investigated by the mixed major gene and polygene inheritance model. Genetic analysis indicated that FPL in cucumber is quantitatively inherited and controlled by one additive major gene and additive-dominant polygenes (D-2 model). A total of 1460 pairs of SSR (simple sequence repeat) primers were analyzed to identify quantitative trait loci (QTLs). Two similar genetic maps with 78 SSR markers which covered 720.6 cM in seven linkage groups were constructed based on two F2 populations. QTL analysis from the data collected at the two field sites showed that there are two minor QTLs on chromosome 1, named qfpl1.1 and qfpl1.2, and one major QTL on chromosome 6, named qfpl6.1. The marker UW021226, which was the closest one to qfpl6.1, had an accuracy rate of 79.0% when tested against plants selected from populations of the two parents. The results from this study provide insights into the inheritance and molecular mechanism of the variation of FPL in cucumber, and further research will be carried out to fine map qfpl6.1 to develop more accurate markers for MAS breeding.

Highlights

  • Cucumber, Cucumis sativus L., is one of the most important cultivated vegetable crops, ranking 4th in quantity of world vegetable production

  • Inbred line 1101 with long fruit peduncles and inbred line 1694 with short fruit peduncles were used as parental lines to develop a segregating population for inheritance analysis and QTL mapping. 1101, the female parent (P1), is from northern Europe with an average fruit peduncle length (FPL) of more than 5.5 cm whereas 1694, the pollen donor (P2), is from southern China with an average FPL of less than or equal to 2 cm

  • The frequency distributions of the fruit peduncle length in the F2 populations at both sites were both normal and skew normal (Fig 2b) suggesting that fruit peduncle length in cucumber is quantitatively inherited. Values calculated for both Akaike Information Criterion (AIC) and the maximum likelihood function for the mixed major gene and polygene model suggested 23 kinds of inheritance (S2 Table)

Read more

Summary

Introduction

Cucumis sativus L., is one of the most important cultivated vegetable crops, ranking 4th in quantity of world vegetable production. Three fourths of this is produced in China where both the area harvested and the quantity produced increase year by year [1]. Fruit Peduncle Length in Cucumber design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call