Abstract

Abstract The eastern massasauga Sistrurus catenatus catenatus is a declining species for which a captive breeding program was established in 2006. To effectively manage wild and captive populations, an understanding of genetic diversity within the species is necessary. We analyzed mitochondrial DNA sequences of 186 individuals: 109 wild snakes from 34 U.S. and Canadian counties and districts, all 52 breeding program members (23 of known and 29 of unknown origin), 18 other captives of unknown origin, and 7 outgroup representatives of desert massasauga S. c. edwardsii, and western massasauga, S. c. tergeminus. Statistical parsimony, maximum likelihood, and maximum parsimony analyses all identified eastern massasaugas as divergent from western and desert massasaugas. We found 18 different haplotypes among eastern massasaugas, comprising three geographically and genetically differentiated NADH dehydrogenase II (ND2) subunits that potentially reflect post-Pleistocene range expansion from unglaciated into formerly glaciated regions. Snakes of unknown origin could all be assigned unambiguously to these ND2 subunits. To maintain natural genetic variation, preserve diversity in captive lineages, and allow future augmentation or reintroduction, the Association of Zoos and Aquariums is managing these three geographic ND2 subunits separately within the Eastern Massasauga Species Survival Plan breeding program.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call