Abstract

Improved nutrient digestibility is an important trait in genetic improvement in pigs due to global resource scarcity, increased human population and greenhouse gas emissions from pork production. Further, poor nutrient digestibility represents a direct nutrient loss, which affects the profit of the farmer. The aim of this study was to estimate genetic parameters for apparent total tract digestibility of nitrogen (ATTDn), crude fat (ATTDCfat), dry matter (ATTDdm), and organic matter (ATTDom) and to investigate their genetic relationship to other relevant production traits in pigs. Near-infrared spectroscopy was used for prediction of total nitrogen content and crude fat content in feces. The predicted content was used to estimate apparent total tract digestibility of the different nutrients by using an indicator method, where acid insoluble ash was used as an indigestible marker. Average ATTDdm, ATTDom, ATTDn, and ATTDCfat ranged from 61% to 75.3%. Moderate heritabilities was found for all digestibility traits and ranged from 0.15 to 0.22. The genetic correlations among the digestibility traits were high (>0.8), except for ATTDCfat, which had no significant genetic correlation to the other digestibility traits. Significant genetic correlations were found between ATTDn and feed consumption between 40 and 120 kg live weight (F40120) (-0.54 ± 0.11) and ATTDdm and F40120 (-0.35 ± 0.12) and ATTDom and F40120 (-0.28 ± 0.13). No significant genetic correlations were found between digestibility traits and loin depth at 100 kg, nor backfat thickness at 100 kg (BF), except between BF and ATTDn (-0.31 ± 0.14). These results suggested that selection for improved feed efficiency through reduced feed intake within a weight interval, also has led to improved ATTDdm, ATTDom, and ATTDn. Further, the digestibility traits are heritable, but mainly related to feed intake and general function of the intestines, as opposed to allocation of feed resources to different tissues in the body.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call