Abstract

Gastrointestinal stromal tumors (GISTs) have been recognized as a biologically distinctive type of tumor, different from smooth muscle and neural tumors of the gastrointestinal tract. The identification of genetic aberrations in proto-oncogenes that drive the growth of GISTs is critical for improving the efficacy of cancer therapy by matching targeted drugs to specific mutations. Research into the oncogenic mechanisms of GISTs has found that these tumors frequently contain activating gene mutations in either platelet-derived growth factor receptor A (PDGFRA) or a receptor tyrosine protein associated with a mast cell growth factor receptor encoded by the KIT gene. Mutant cancer subpopulations have the potential to disrupt durable patient responses to molecularly targeted therapy for GISTs, yet the prevalence and size of subpopulations remain largely unexplored. Detection of the cancer subpopulations that harbor low-frequency mutant alleles of target proto-oncogenes through the use of molecular genetic methods, such as polymerase chain reaction (PCR) target amplification technology, is hampered by the high abundance of wild-type alleles, which limit the sensitivity of detection of these minor mutant alleles. This is especially true in the case of mutant tumor DNA derived “driver” and “drug-resistant” alleles that are present in the circulating cell-free tumor DNA (cfDNA) in the peripheral blood circulation of GIST patients. So-called “liquid biopsy” allows for the dynamic monitoring of the patients’ tumor status during treatment using minimally invasive sampling. New methodologies, such as a technology that employs a xenonucleic acid (XNA) clamping probe to block the PCR amplification of wild-type templates, have allowed improved molecular detection of these low-frequency alleles both in tissue biopsy samples and in cfDNA. These new methodologies could be widely applied for minimally invasive molecular testing in the therapeutic management of GISTs.

Highlights

  • Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract, accounting for approximately 20% of all sarcomas [1, 2]

  • BRAF mutations have been detected in GIST patients with wild-type KIT/platelet-derived growth factor receptor A (PDGFRA)

  • It has been shown that growth factor mutations can be recovered in cell-free tumor DNA (cfDNA) in serum samples of patients with non-small cell lung cancer [48], and detection of circulating mutant tumor suppressors adenomatous polyposis coli (APC) and p53, or KRAS DNA was shown to associate with progression-free survival in patients with colorectal cancer [49]

Read more

Summary

Introduction

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract, accounting for approximately 20% of all sarcomas [1, 2]. Yan et al Chin J Cancer (2016) 35:68 current status of targeted molecular therapies for GISTs and the current state-of-the-art of high-sensitivity molecular genetic tests that are able to detect low-frequency tumor-derived mutations in cancer patients employing minimally invasive sampling, i.e., “liquid biopsy”.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call