Abstract
Inspired by successful application of evolutionary algorithms to solving difficult optimization problems, we explore in this paper, the applicability of genetic algorithms (GAs) to the cover printing problem, which consists in the grouping of book covers on offset plates in order to minimize the total production cost. We combine GAs with a linear programming solver and we propose some innovative features such as the “unfixed two-point crossover operator” and the “binary stochastic sampling with replacement” for selection. Two approaches are proposed: an adapted genetic algorithm and a multiobjective genetic algorithm using the Pareto fitness genetic algorithm. The resulting solutions are compared. Some computational experiments have also been done to analyze the effects of different genetic operators on both algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.