Abstract
We have investigated protein conformation sampling and optimization based on the genetic algorithm and discrete main chain dihedral state model. An efficient approach combining the genetic algorithm with local minimization and with a niche technique based on the sharing function is proposed. Using two different types of potential energy functions, a Go-type potential function and a knowledge-based pairwise potential energy function, and a test set containing small proteins of varying sizes and secondary structure compositions, we demonstrated the importance of local minimization and population diversity in protein conformation optimization with genetic algorithms. Some general properties of the sampled conformations such as their native-likeness and the influences of including side-chains are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.