Abstract

Discrete optimization problems are usually NP hard. The structural characteristics of these problems significantly dictate the solution landscape. In this paper, we explore a structure-based approach to solving these kinds of problems. We use a reinforcement learning system to adaptively learn the structural characteristics of the problem, hereby decomposing the problem into several subproblems. Based on these structural characteristics, we develop a Genetic Algorithm by using structural operations to recombine these subproblems together to solve the problem. The reinforcement learning system directs the GA. We test our algorithm on the Tactical Fixed Interval Scheduling Problem(TFISP) which is the problem of determining the minimum number of parallel non-identical machine such that a feasible schedule exists for a given set of jobs. This work continues our work in exploiting structure for optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.