Abstract

This paper presents a procedure for solving a multiobjective chance-constrained programming problem. Random variables appearing on both sides of the chance constraint are considered as discrete random variables with a known probability distribution. The literature does not contain any deterministic equivalent for solving this type of problem. Therefore, classical multiobjective programming techniques are not directly applicable. In this paper, we use a stochastic simulation technique to handle randomness in chance constraints. A fuzzy goal programming formulation is developed by using a stochastic simulation-based genetic algorithm. The most satisfactory solution is obtained from the highest membership value of each of the membership goals. Two numerical examples demonstrate the feasibility of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.