Abstract
This paper introduces a new technique called adaptive elitist-population search method. This technique allows unimodal function optimization methods to be extended to efficiently explore multiple optima of multimodal problems. It is based on the concept of adaptively adjusting the population size according to the individuals’ dissimilarity and a novel direction dependent elitist genetic operators. Incorporation of the new multimodal technique in any known evolutionary algorithm leads to a multimodal version of the algorithm. As a case study, we have integrated the new technique into Genetic Algorithms (GAs), yielding an Adaptive Elitist-population based Genetic Algorithm (AEGA). AEGA has been shown to be very efficient and effective in finding multiple solutions of complicated benchmark and real-world multimodal optimization problems. We demonstrate this by applying it to a set of test problems, including rough and stepwise multimodal functions. Empirical results are also compared with other multimodal evolutionary algorithms from the literature, showing that AEGA generally outperforms existing approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.