Abstract

The SPIN tandem ion funnel (IF) structure allows for highly sensitive mass spectrometry due to reduced ion losses in the interface region and during transmission; however, IF has an inherent mass discrimination problem, which can greatly restrain the ion transmission efficiency (TE) and therefore requires certain optimization methods. Conventional optimization methods ignore the combined effects of multiple IF characteristic parameters (electrical and dimensional parameters) and are unable to achieve efficient ion transmission over a wide mass range, thus requiring significant tuning time. In this paper, a genetic algorithm (GA)-optimized printed circuit board ion funnel (PCBIF) was designed, fabricated, preliminarily evaluated, and integrated into the SPIN interface to address the ion loss that can occur when mass spectrometers transfer ions at subambient pressure. Simulation studies have showed clearly that the effective automated GA can increase the PCBIF optimization, design, and the ion TE (finding the optimal characteristic parameters within 4 h and achieving 96% ion TE for ions with m/z between 50 and 700). Preliminary tests on built SPIN-PCBIF-MS can lead to an LOD of 0.01 nM and also indirectly suggest the effectiveness of the GA-optimized PCBIF. The proposed GA method helps to guide the design of IF and can also be used for other multivariate mass analyzers or ion transmission devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.