Abstract

Most recommender systems are based on the familiar collaborative filtering algorithm to suggest items. Quite often, collaborative filtering algorithm fails in generating recommendations due to the lack of adequate user information resulting in new user cold start problem. The cold start problem is one among the prevailing issue in recommendation system where the system fails to render recommendations. To overcome the new user cold start issue, demographical information of the user is utilised as the user information source. Among the demographical information, the impact of the user gender is less explored when compared with other information like age, profession, region, etc. In this work, a genetic algorithm-influenced gender-based top-n recommender algorithm is proposed to address the new user cold start problem. The algorithm utilises the evolution concepts of the genetic algorithm to render top-n recommendations to a new user. The evaluation of the proposed algorithm using real world datasets proved that the algorithm has a better efficiency than the state of art approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.