Abstract
SummaryThe growth of small communication devices has pushed designers to design compact‐size antennas. These antennas must be low cost, lightweight, needed for mechanically robust construction, and ease of installation. In this paper, we use a novel genetic algorithm (GA) to produce an ensemble of compact self‐avoiding (SA) antennas such that the voltage standing wave ratio (VSWR) is less than 2 at the desired frequencies (as a measure of efficiency); an optimization criterion to get a desirable multiband antenna in the ultra high frequency (UHF) band. First, the electromagnetic properties of these antennas are simulated using the method of moments in MATLAB. SA antennas form a particular set of dipoles introduced here by applying a novel backtracking algorithm. We also use a Lindenmayer system that generates the geometries by a Turtle graphics render to reach our goal. Next, we simulate the VSWR for 150,000 SA antennas with lengths from 0.1 to 0.4 m; 10 different frequencies are chosen randomly within the UHF band to obtain our results. All the VSWR 2 are clustered using density‐based spatial clustering of applications with noise algorithm (DBSCAN), so our method provides the frequency ranges where this condition is fulfilled. From this, we obtain the VSWR minimums used for the antenna design. Finally, as an instance, we use our results to select the appropriate size of a multiband antenna and, through genetic algorithms, modify the geometry to satisfy the design requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.