Abstract
ABSTRACTThe techniques of applying single and multi-objective optimization (MOO) for single/multiple parameters estimation in sorption and phase equilibria calculations were demonstrated, and it was shown that non-dominated sorting genetic algorithm with jumping genes adaptation is a useful tool for standard nonlinear regressions. Simultaneous description of vapor liquid equilibrium (VLE) and the heat of mixing (excess enthalpy) are considered a complex task in applied thermodynamics. MOO problem for simultaneous VLE and excess enthalpy prediction was formulated by (1) transforming multi-objectives into an aggregated/single scalar objective function, and (2) formulating independent objectives and solving simultaneously. It was shown that GA leads to an entire set of equally good optimal solutions known as Pareto-optimal fronts. However, simultaneous solution of MOO problem produced a wide range Pareto-optimal solution than that of the weighted sum approach. Pareto-optimal solutions are important process knowledge from which a decision-maker can opt for any set based on the applications/requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.