Abstract

AbstractIn the process of discrete‐sizing optimal design of truss structures by Genetic Algorithm (GA), analysis should be performed several times. In this article, the force method is employed for the analysis. The advantage of using this method lies in the fact that the matrices corresponding to particular and complementary solutions are formed independently of the mechanical properties of members. These matrices are used several times in the process of the sequential analyses, increasing the speed of optimization. The second feature of the present method is the automatic nature of the prediction of the useful range of sections for a member from a list of profiles with a large number of cross‐sections. The third feature consists of a contraction process developed to increase the efficiency of the GA by which an optimal design for the first sub‐string associated with member cross‐sections is obtained. Improved designs are achieved in subsequent cycles by reducing the length of sub‐strings. Copyright © 2002 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.