Abstract

Feature subsets and hidden Markov model (HMM) parameters are the two major factors that affect the classification accuracy (CA) of the HMM-based classifier. This paper proposes a genetic algorithm based approach for simultaneously optimizing both feature subsets and HMM parameters with the aim to obtain the best HMM-based classifier. Experimental data extracted from three spontaneous speech corpora were used to evaluate the effectiveness of the proposed approach and the three other approaches (i.e. the approaches to single optimization of feature subsets, single optimization of HMM parameters, and no optimization of both feature subsets and HMM parameters) that were adopted in the previous work for discrimination between speech and non-speech events (e.g. filled pause, laughter, applause). The experimental results show that the proposed approach obtains CA of 91.05%, while the three other approaches obtain CA of 86.11%, 87.05%, and 83.16%, respectively. The results suggest that the proposed approach is superior to the previous approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.