Abstract

AbstractResearch has recently grown on multi-agent systems (MAS) and their coordination and secure cooperative control, for example in the field of edge-cloud computing. MAS offers robustness and flexibility compared to centralized systems by distributing control across decentralized agents, allowing the system to adapt and scale without overhaul. The collective behavior emerging from agent interactions can solve complex tasks beyond individual capabilities. However, controlling high-order nonlinear MAS with unknown dynamics raises challenges. This paper proposes an enhanced genetic algorithm strategy to enhance secure cooperative control performance. An efficient encoding method, adaptive decoding schemes, and heuristic initialization are introduced. These innovations enable compelling exploration of the solution space and accelerate convergence. Individual enhancement via load balancing, communication avoidance, and iterative refinement intensifies local search. Simulations demonstrate superior performance over conventional algorithms for complex control problems with uncertainty. The proposed method promises robust, efficient, and consistent solutions by adapting to find optimal points and exploiting promising areas in the space. This has implications for securely controlling real-world MAS across domains like robotics, power systems, and autonomous vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.