Abstract

Personal identification is the task of authenticating a person using individual biological features. Deep neural networks (DNNs) have demonstrated an impressive performance in this field. Since no general algorithm is available for the design of network structures and the parameters adopted in DNNs for every application problem, DNNs should be determined according to the programmers’ experiments and know-how. For a new application task, it is very time-consuming for non-experts to design network structure, hyperparameters and an ensemble of base models adequately and effectively. In this paper, we present a genetic algorithm (GA)-based approach to construct network structures, tune their hyperparameters, and generate base models for the ensemble algorithm. The ensemble is constructed from base models with different network structures according to the voting ensemble algorithm. Our original personal identification dataset is employed as the numerical example to illustrate the performance of the proposed method. The results show that the prediction accuracy of the ensemble model is better than that of the base models and that the prediction of walking behavior toward the Kinect at 90 degrees and 225 degrees is more difficult than other walking behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call