Abstract

When solving multi-objective optimization problems subject to constraints in reliability-based design, it is desirable for the decision maker to have a sufficient number of solutions available for selection. However, many existing approaches either combine multiple objectives into a single objective or treat the objectives as penalties. This results in fewer optimal solutions than would be provided by a multi-objective approach. For such cases, a niched Pareto Genetic Algorithm (GA) may be a viable alternative. Unfortunately, it is often difficult to set penalty parameters that are required in these algorithms. In this paper, a multi-objective optimization algorithm is proposed that combines a niched Pareto GA with a constraint handling method that does not need penalty parameters. The proposed algorithm is based on Pareto tournament and equivalence sharing, and involves the following components: search for feasible solutions, selection of non-dominated solutions and maintenance of diversified solutions. It deals with multiple objectives by incorporating the concept of Pareto dominance in its selection operator while applying a niching pressure to spread the population along the Pareto frontier. To demonstrate the performance of the proposed algorithm, a test problem is presented and the solution distributions in three different generations of the algorithm are illustrated. The optimal solutions obtained with the proposed algorithm for a practical reliability problem are compared with those obtained by a single-objective optimization method, a multi-objective GA method, and a hybrid GA method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call