Abstract
Genetic algorithms (GAs) are used to implement an automated wavelength selection procedure for use in building multivariate calibration models based on partial least-squares regression. The method also allows the number of latent variables used in constructing the calibration models to be optimized along with the selection of the wavelengths. The data used to test this methodology are derived from the determination of aqueous organic species by near-infrared spectroscopy. The three data sets employed focus on the determination of (1) methyl isobutyl ketone in water over the range of 1-160 ppm, (2) physiological levels of glucose in a phosphate buffer matrix containing bovine serum albumin and triacetin, and (3) glucose in a human serum matrix. These data sets feature analyte signals near the limit of detection and the presence of significant spectral interferences. Studies are performed to characterize the signal and noise characteristics of the spectral data, and optimal configurations for the GA are found for each data set through experimental design techniques. Despite the complexity of the spectral data, the GA procedure is found to perform well, leading to calibration models that significantly outperform those based on full spectrum analyses. In addition, a significant reduction in the number of spectral points required to build the models is realized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.