Abstract
In this paper, we present an innovative approach for the discovery of involutory maximum distance separable (MDS) matrices over finite fields F2q, derived from MDS self-dual codes, by employing a technique based on genetic algorithms. The significance of involutory MDS matrices lies in their unique properties, making them valuable in various applications, particularly in coding theory and cryptography. We propose a genetic algorithm-based method that efficiently searches for involutory MDS matrices, ensuring their self-duality and maximization of distances between code words. By leveraging the genetic algorithm’s ability to evolve solutions over generations, our approach automates the process of identifying optimal involutory MDS matrices. Through comprehensive experiments, we demonstrate the effectiveness of our method and also unveil essential insights into automorphism groups within MDS self-dual codes. These findings hold promise for practical applications and extend the horizons of knowledge in both coding theory and cryptographic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.