Abstract

Statistical properties of the error sequences produced by fading channels with memory have a strong influence over the performance of high layer protocols and error control codes. Finite State Markov Channel (FSMC) models can represent the temporal correlations of these sequences efficiently and accurately. This paper proposes a simple genetic algorithm (GA) based search for the optimum state transition matrix for a block diagonal Markov model. The burst error statistics of the GA based FSMC model with respect to Autocorrelation Function and error free interval distribution of the original error sequence are presented to validate the proposed method. The superiority of the GA approach over the semi-hidden Markov model (SHMM) based Fritchman model is exhibited in significant improvement of closeness of match and in the usage of shorter length of error sequences. Another Baum-Welch algorithm (BWA) based GA search method has been proposed and compared with the BWA and SHMM methods for the same error sequence. Again the superiority of GA approaches is recognized, especially for the smaller error lengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.