Abstract

Antifreeze proteins (AFPs) are of much interest for their ability to inhibit ice growth at low concentrations. In this work, we present a genetic algorithm for the in silico design of AFP mutants with improved antifreeze activity, measured as the predicted thermal hysteresis at a fixed concentration, ΔTC. Central to the algorithm is our recently developed neural network method for predicting ΔTC from molecular simulations [Kozuch et al., PNAS, 115, 13252 (2018)]. Applying the algorithm to three structurally diverse AFPs, wfAFP, rQAE, and RiAFP, we find that significantly improved mutants are discovered for rQAE and RiAFP. Testing of the optimized mutants shows an increase in ΔTC of 0.572 ± 0.11 K (262 ± 50.6%) and 1.33 ± 0.14 K (39.9 ± 4.19%) over the native structures for rQAE and RiAFP, respectively. Structural analysis of the optimized mutants reveals that the algorithm is able to exploit two pathways for enhancing the predicted antifreeze activity of the mutants: (1) increasing the local order of surface waters by encouraging the formation of internal water channels in the protein and (2) increasing the total ice-binding area by improving the planar structure of the ice-binding surface. Additionally, analysis of all mutants explored by the algorithm reveals that a subset of residues, mainly nonpolar, are particularly helpful in improving antifreeze activity at the ice-binding surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.