Abstract

We first introduce a local search procedure to solve the cell formation problem where each cell includes at least one machine and one part. The procedure applies sequentially an intensification strategy to improve locally a current solution and a diversification strategy destroying more extensively a current solution to recover a new one. To search more extensively the feasible domain, a hybrid method is specified where the local search procedure is used to improve each offspring solution generated with a steady state genetic algorithm. The numerical results using 35 most widely used benchmark problems indicate that the line search procedure can reduce to 1% the average gap to the best-known solutions of the problems using an average solution time of 0.64s. The hybrid method can reach the best-known solution for 31 of the 35 benchmark problems, and improve the best-known solution of three others, but using more computational effort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.